
OFFPRINT

Anisotropic constraints on energy distribution
in rotating and stratified turbulence

S. Kurien, B. Wingate and M. A. Taylor

EPL, 84 (2008) 24003

Please visit the new website
www.epljournal.org



Europhysics Letters (EPL) has a new online home at
www.epljournal.org

Take a look for the latest journal news and information on:

• reading the latest articles, free!

• receiving free e-mail alerts

• submitting your work to EPL

TAKE A LOOK AT
THE NEW EPL

www.epl journal.org



October 2008

EPL, 84 (2008) 24003 www.epljournal.org

doi: 10.1209/0295-5075/84/24003

Anisotropic constraints on energy distribution in rotating

and stratified turbulence

S. Kurien1(a), B. Wingate2 and M. A. Taylor3

1 Theoretical Division, Los Alamos National Laboratory - Los Alamos, NM 87545, USA
2 Computer and Computational Sciences Division, Los Alamos National Laboratory - Los Alamos, NM 87545, USA
3 Exploratory Simulations Technologies, Sandia National Laboratories - Albuquerque, NM 87185, USA

received 27 March 2008; accepted in final form 8 September 2008
published online 8 October 2008

PACS 47.27.-i – Turbulent flows
PACS 47.32.-y – Vortex dynamics; rotating fluids
PACS 47.55.Hd – Stratified flows

Abstract – It is shown that for Boussinesq flows in which rotation and stratification are equally
strong, the forward cascade of potential enstrophy constrains the spectral distribution of horizontal
kinetic energy and potential energy. Horizontal kinetic energy is suppressed in the small–aspect-
ratio wave modes, and potential energy in suppressed in the large–aspect-ratio wave modes.
Scaling estimates based on phenomenological arguments yield scaling of k−3h and k

−3
z , respectively,

of the two spectra. High-resolution numerical simulations of the Boussinesq equations in the
relevant parameter regimes show spectral scaling exponent closer to −4, and hence even stronger
suppression than is predicted by dimensional estimates.

Copyright c© EPLA, 2008

Introduction. – It is well known that in two-
dimensional (2d) turbulence the downscale transfer of
energy is suppressed due to predominant downscale trans-
fer of enstrophy, the second invariant in 2d flows [1,2].
The energy is thus forced to transfer to the larger scales,
in the so-called inverse cascade. In general, it appears that
if there is more than one invariant in a hydrodynamical
system and they are related in wave number space, they
can impose contraints on each other which determine the
direction of dominant transfer of each [3].
Another classical example of such mutually constrained

conserved quantities is found in quasi-geostrophic (QG)
flow. The latter is an approximation for rapidly rotating,
strongly stratified flows [4,5]. The zeroth-order expansion
of the velocity in the rotation and stratification parameters
is geostrophic, that is, the Coriolis force is balanced by the
pressure gradient force, and the linear plane waves called
inertia-gravity waves are eliminated to the lowest order.
The dynamics is described by the evolution of potential
vorticity qqg [6]:

∂qqg
∂t
+u0h ·∇qqg = 0, (1)

where

qqg = f
∂θ

∂z
−Nω3, (2)

(a)E-mail: skurien@lanl.gov

where u0h is the leading order (horizontal) geostrophically
balanced velocity, θ is the density fluctuation scaled to
have the same dimensions as velocity, ω3 = (∇h×uh) · ẑ is
the z-component of the vorticity, f and N are the Coriolis
and Brunt-Väisälä (buoyancy) frequencies, respectively, of
a system which is rotating and stratified in the z-direction.
Charney [6] showed that the global conservation of

kinetic plus potential energy,

ET =
1

2

∫

(|u0|
2+ θ2)dx, (3)

and potential enstrophy,

Qqg =
1

2

∫

|qqg|
2dx, (4)

in inviscid three-dimensional (3d) QG flow, leads to an
inverse (upscale) cascade of energy with corresponding
low–wave-number energy spectrum

ET (k)∝ ε
2/3k−5/3, (5)

and a forward (downscale) cascade of potential enstrophy
with corresponding high–wave-number energy spectrum

ET (k)∝ ε
2/3
Q k

−3. (6)

Here k is the wave number and ε and εQ are the transfer
rates of energy and potential enstrophy, respectively
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(see for example [7] for further discussion on the assump-
tions and details of Charney’s work). Notably, the scaling
predictions in eqs. (5), (6) are very similar to those for
2d turbulence, but arise not from two-dimensionality but
from the truncated quasi-geostrophic dynamics of a 3d
flow.
In theory, as the rotation and stratification of a 3d

fluid become infinitely strong, the inertia-gravity waves
are eliminated to lowest order, giving leading-order QG
flow satisfying (1), (2). In practice, for very strong but
finite rotation and stratification, the inertia-gravity waves
continue to strongly influence the small-scale dynamics
leading to ET (k)∼ k

−γ , where 1< γ < 2 [8,9] in the high
wave numbers. The underlying leading-order QG scaling
of k−3 predicted by Charney can then only be extracted by
separating the QG (or geostrophic) modes from the wave
(or ageostrophic) modes by either suitably projecting the
full solutions onto the QG modes [8,10–12] or by filtering
out the ageostrophic inertia-gravity waves [5].
We consider rotating stratified turbulence as described

by the Bousinnesq equations, retaining both the leading
order QG as well as sub-leading contributions from inertia-
gravity waves and other nonlinear waves. We show that in
the regime of equally strong rotation and stratification,
potential enstrophy imposes separate constraints on the
horizontal kinetic energy and the potential energy. Let
wave vector k= kxx̂+ kyŷ+ kzẑ, such that the horizontal
component kh = (k

2
x+ k

2
y)
1/2 and the vertical component

is kz. Then, the potential enstrophy suppresses potential
energy in the modes with large aspect ratio kz/kh≫ 1.
The resulting potential energy spectral scaling of k−3z is
obtained simply by dimensional analysis and the assump-
tion that the potential enstrophy flux (dissipation) governs
the high–wave-number distribution of potential energy.
Similarly, potential enstrophy also suppresses horizontal
kinetic energy in modes with small aspect ratio kz/kh≪ 1
(or kh/hz≫ 1), with horizontal kinetic energy spectrum
scaling of k−3h according to dimensional analysis. These
are the first scaling estimates for the spectra of rapidly
rotating and stably stratified flows away from pure QG,
obtained solely using the relationship between potential
enstrophy and energy as a function of wave number.
We must emphasize the most important feature of

our results. Typically, numerical simulations of rotating
and stratified flows are analyzed using the Craya-Herring
decomposition [10,11] into wave (fast) and vortical (slow)
modes, the latter also known as the potential-vorticity
(PV) modes (see for example [8,12,13] and references
therein). Using such a decomposition, one separates the
fast wave modes from the slow PV modes and analyzes
these separately with comparisons made to Charney’s
prediction for the QG modes. In the present work, the
“decomposition” is not in wave modes, but rather in
the separate behavior of horizontal kinetic energy and
potential energy of the un-decomposed field, depending on
the aspect ratio of wave number. In fact, our mathematical
and numerical analysis may be more relevant to real

physical flows which are in the rapidly rotating and
strongly stratified regime, but are not strictly QG or for
which doing mode decompositions may not be feasible due
to sparseness or other limitations of field data.

Rapidly rotating and strongly stratified Boussi-

nesq dynamics. – We begin with the Boussinesq equa-
tions [4] for rotating, stably stratified and incompressible
flow as written in [14]:

D

Dt
u+ f ẑ×u+∇p+Nθẑ = ν∇2u+F ,

D

Dt
θ−Nw = κ∇2θ, (7)

∇·u = 0,

D

Dt
=
∂

∂t
+u ·∇, (8)

where u is the velocity, w is its vertical component, p is
the effective pressure and F is an external input or force.
The total density is given by

ρT (x) = ρ0− bz+ ρ(x), (9)

such that
|ρ| ≪ |bz| ≪ ρ0, (10)

where ρ0 is the constant background, b is constant and
larger than zero for stable stratification in the vertical
z-coordinate, ρ is the density fluctuation. The density is
normalized to θ= ρ(g/bρ0)

1/2 which has the dimensions
of velocity. The Coriolis parameter f = 2Ω, where Ω is the
constant rotation rate about the z-axis, the Brunt-Väisälä
frequency N = (gb/ρ0)

1/2, ν = μ/ρ0 is the kinematic
viscosity and κ is the mass diffusivity coefficient. We
assume periodic or infinite boundary conditions. The
relevant nondimensional parameters for this system are
the Rossby number Ro= fnl/f and the Froude number
Fr= fnl/N , where fnl = (ǫfk

2
f )
1/3 is the nonlinear

frequency given input rate of energy ǫf [12]. Thus Ro and
Fr are the ratios of rotation and stratification timescales,
respectively, to the nonlinear timescale.
The Boussinesq equations conserve the following

quantities for F = ν = κ= 0:

total energy ET =E+P,
D

Dt

∫

ET dx = 0,

potential vorticity q=
(

ωa ·∇ρT
)

,
Dq

Dt
= 0,

potential enstrophy Q=
1

2
q2,

DQ

Dt
=
D

Dt

∫

Qdx = 0.

E = 12 |u|
2 is the kinetic energy, P = 12θ

2 is the poten-
tial energy of the density fluctuations. The absolute
vorticity ωa =ω+ f ẑ and the relative (or local) vorticity
ω=∇×u. Potential vorticity may be written in terms of
θ as

q= fN +ω ·∇θ+ f
∂θ

∂z
−Nω3. (11)
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The constant part fN does not participate in the dynam-
ics and we will therefore neglect it from now on. The linear
part of (11) is precisely qqg of (2). In what follows we will
assume that ν→ 0 and κ→ 0 such that Prandtl number
Pr= ν/κ= 1, and the force F is confined to the lowest
modes. Thus we assume a conventional “inertial range” of
turbulent scales wherein the transfer of conserved quan-
tities dominates over both their dissipation and forcing.
In the limit Ro→ 0, Fr→ 0, the linear waves known

as inertia-gravity waves are eliminated in the leading-
order solution, yielding classical QG as described by (2).
Equivalently, one could project out the linear solutions of
eq. (7) which carry the linear potential vorticity [8,12].
Quasi-geostrophic modes are thus a subset of the full
solution to the Boussinesq equations in the limit Ro→ 0,
Fr→ 0, a limit which is difficult to achieve in practice.
From the nondimensional form q=ω ·∇θ+Ro−1 ∂θ∂z −

Fr−1ω3, it is observed that as Ro→ 0 and Fr→ 0, the
potential vorticity q approaches qqg [8,15]. In Fourier
representation:

q̃(k)≃−ifkz θ̃+ iNkh× ũh =−ifkz θ̃+ iNkhũh, (12)

where ·̃ denotes Fourier coefficients, the total wave vector
k= kh+ kzẑ, the horizontal wave vector component has
length kh = (k

2
x+ k

2
y)
1/2, the vertical wave number is kz

and uh is the horizontal velocity vector with magnitude
uh = (u

2
x+u

2
y)
1/2. We assume that the vertical velocity

w= uz ∼ 0 in the lowest order (classical QG) thus obtain-
ing the last equality of eq. (12). We take both N and
f to be very large, and N/f = 1, so that Ro= Fr. This
approaches the special case Ro→ 0 and Fr→ 0 while
Ro= Fr which was shown rigorously to be leading-order
QG in [14]. For k > kf , we consider two cases.

Large–aspect-ratio modes, kzkh ≫ 1. These are the more
vertical wave number modes corresponding loosely to flat
“pancake” scales in physical space. Equation (12) reduces
to q̃≃−ifkz θ̃, yielding:

Q(kh, kz) =
1

2
|q̃|2 = f2k2zP (kh, kz), (13)

where the potential energy spectral density is P (kh, kz) =
1
2 |θ̃|

2. Upon integrating both sides over the vertical wave
number interval [κz,∞]:

∫

∞

κz

Q(kh, kz)dkz =

∫

∞

κz

f2k2zP (kh, kz) dkz. (14)

Then, for large κz, we are lead to the following constraint:

∫

∞

κz

Q(kh, kz)dkz≫ f
2κ2z

∫

∞

κz

P (kh, kz) dkz. (15)

Thus, for sufficiently high wave numbers κz→∞, the
potential enstrophyQ forms the dominant forward cascade
and, in order to remain finite, suppresses the potential
energy P in this regime. The dimensional argument
following [2] for two-dimensional turbulence assumes that

Table 1: Parameters of Boussinesq calculations: n—number of
grid points to a side; kf —forcing wave number; N —Brunt-
Väisälä frequency, Ro—Rossby number; Fr—Froude number;
ǫf —rate of input of kinetic energy.

# n kf N/f Ro Fr ǫf
1 512 4 1 0.014 0.014 0.60
2 512 4 1 0.0072 0.0072 0.60

in this wave number limit, the potential energy spectrum
must depend only on the potential enstrophy flux rate εQ
and the vertical wave number kz, so that

P (kh, kz)∼ ε
2/5
Q k

−3
z . (16)

We will comment in the conclusion section on why this
assumption may not be appropriate in this case.

Small–aspect-ratio modes, khkz ≫ 1. These are the
wide flat wave number modes corresponding to the tall
columnar scales in physical space. In this limit eq. (12)
reduces to q̃= iNkhũh. Following the same arguments as
for potential energy above, we obtain that the potential
enstrophy dominates the forward cascade in the regime
kh/kz≫ 1, resulting in suppression of horizontal kinetic
energy in those modes, and the following scaling estimate:

Eh(kh, kz)∼ ε
2/5
Q k

−3
h , (17)

where the horizontal kinetic energy Eh(kh, kz) =
1
2 |ũh|

2.
In the next sections we seek to numerically verify our
predictions for the energy spectra in the two limiting
regimes in wave number.

Numerical simulations. – We compute the Boussi-
nesq equations (7) for N = f very large, using a pseudo-
spectral code in a periodic cube of side L= 1, with wave
numbers which are integer multiples of 2π. A fourth-order
Runge-Kutta time integration is used and the inertia-
gravity wave frequencies are resolved in our implicit
scheme. Since we are interested in the small scales (high
wave numbers), we use a statistically isotropic, white in
time, stochastic forcing centered at kf = 4 (see [16] for
more details about the forcing). The viscous dissipation
is modeled using a hyperviscous term (−1)p+1ν(∇2)pu,
where p= 8 in place of the normal Laplacian viscosity
term ν∇2u. The hyperviscosity coefficient ν is dynam-
ically chosen based on the energy in the highest mode
for both momentum and mass diffusion following [12,17],

ν(t) = 2.5
(

E(km,t)
km

)1/2

k2−2pm , where km is the highest

available wave number and E(km, t) is the kinetic energy
in that wave number. An analogous scheme is used for the
diffusion of θ. The parameters of our highest resolution
runs are given in table 1. We report the results from
data #2 for which Ro and Fr are the smallest.
It is worthwhile to comment on the use of power p= 8

of the Laplacian in the dissipation term of our numerical
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Fig. 1: Total potential enstrophy Q (line) and its quadratic
part Qqg (circles) for datasets 1 (top) and 2 (bottom) in
table 1. As Ro and Fr decrease, the two curves become
nearly indistinguishable, indicating purely quadratic potential
enstrophy. Time t is in dimensional units.

scheme. Such so-called hyperviscosity is commonly used
to strongly confine dissipation to the very highest modes
and hence extend the inertial range of scales. However,
one must be careful that the over-damping of the small
scales due to hyperviscosity does not lead to unphysical
artifacts. Recently, it was shown that in eddy-damped
quasi-normal Markov (EDQNM) closure simulations of
three-dimensional turbulence (without rotation or strat-
ification), that the use of a high power of the Laplacian
leads to an enhanced bottleneck in the energy spectrum,
to be interpreted as an incomplete thermalization [18].
Therefore, we have exerted some care in performing hyper-
viscous simulations. We have used the scheme of [17] which
dynamically chooses the coefficient of the viscous term in
order that the energy in the largest shell is resolved. There
is as yet no way to pre-determine how high one can safely
go in the power of the Laplacian without trial and error
for a specific flow. In our case, we converged to the choice
of p= 8 after studying lower values and noting that for
this particular flow, no bottleneck appears and the iner-
tial range is smoothly extended as the power p is increased.
We also chose p= 8 in order to compare with the well-
established simulations of Smith and Waleffe [12].
Figure 1 shows the evolution of the total potential

enstrophy Q from (11) for data #1 and #2 of table 1,
and its quadratic piece Qqg. As Ro and Fr decrease, one
observes that the total potential enstrophy becomes essen-
tially indistinguishable from its quadratic part, indicating
that the nonlinear part ω ·∇θ of the potential vorticity
is negligible. The mean potential enstrophy has reached
a nearly steady value in the time range 2.5< t< 6, which

10
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10
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−2
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10
0

k

E(k)

P(k)

10
0

10
2

10
0

k
−1

time average 3 < t < 6

t = 6.0

k
−1

Fig. 2: Log-log plot of spherical shell averaged potential and
kinetic energy spectra for data #2 at time t= 6. The high wave
number scaling is k−1 indicating that in this representation the
energy is dominated by waves. Inset: same spectra averaged
over time 3� t� 6 shows that the spectra have converged over
the time period that the mean potential enstrophy becomes
constant (see fig. 1).

corresponds to between 5 and 13 nonlinear time cycles, or
5000 to 13000 rotation (stratification) cycles.
Figure 2 shows the shell-averaged kinetic and potential

energy spectra for our simulation, computed as follows:

E(k) =
1

2

∑

k′

|ũ(k′)|2, P (k) =
1

2

∑

k′

|θ̃(k′)|2,

where k− 0.5� k′ <k+0.5 thus including all wave
numbers in the spherical shell of average radius k. The
scaling of both E(k) and P (k) is k−1 for k≫ kf which
indicates that by this measure the high wave numbers
are still dominated by waves [8,19]. The time-averaged
spectra (inset) also show a scaling very close to k−1

indicating that the high wave numbers (k > kf ) have
achieved close to a statistically steady state. Note that the
scaling of k−1 for the shell-averaged spectrum is unique to
the case N/f = 1 for small Ro and Fr [19]. In particular
it is noted in [19] that if stratification dominates (N > f),
a close to k−5/3 spectrum is observed. This may explain
the near k−5/3 scaling observed in [13] for stratification
dominated cases. Most importantly the scaling is nowhere
near as steep as k−3 for the shell-averaged spectrum in
any of these cases.
The potential energy and horizontal kinetic energy

spectra as functions of kh and kz were computed as double
sums according to

P (kh, kz) =
1

2

∑

k′
h
,k′
z

|θ̃(k′)|2, (18)
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Fig. 3: Log-log plot of potential energy density P (kh, kz) vs. kz
for data #2 averaged over time 3� t� 6. Each curve is the
spectrum for a different fixed value of kh. For 10� kh � 50 and
kz≫ kf , the scaling ranges between k

−4
z and k−3z . Inset: same

spectra vs. kz/kh shows that the “turnover” to the inertial
range scaling for all the curves emerges for large aspect ratio
kz/kh > 1 as predicted.

Eh(kh, kz) =
1

2

∑

k′
h
,k′
z

|ũh(k
′)|2 (19)

where kz[kh]− 0.5� k
′

z[k
′

h]< kz[kh] + 0.5. Figure 3 shows
P (kh, kz) as a function of kz for various values of kh. For
10� kh � 50 and kf � kz � 100, the scaling for P (kh, kz)
ranges between k−4z and k−3z indicating even stronger
suppression of potential energy than the dimensional
prediction of eq. (16). The inset of fig. 3 shows the same
spectra vs. kz/kh; the inertial range scaling for each kh
emerges only for large aspect ratio kz/kh � 1, as predicted
for eq. (16). Overall the constraints on potential energy
due to potential enstrophy are dependent on wave mode
aspect ratio and are highly anisotropic in scale.
Figure 4 shows Eh(kh, kz) as a function of kh for

various values of kz. For 10� kz � 50 and 10<kh < 100,
the horizontal energy spectrum Eh(kh, kz) scales between
k−4h and k

−3
h consistent with the suppression of horizontal

kinetic energy by potential enstrophy in these modes.
As kh grows, the horizontal kinetic energy persists more
strongly into the high kh. Conversely, for a fixed small
kh, the smaller kz have more energy, indicating a growth
of energy upscale in kz. The inset of fig. 4 shows again
that the inertial range scaling predicted arises only in the
anisotropic small aspect ratio regime kh/kz � 1, consistent
with prediction.

Conclusions. – The 5123 resolution numerical
calculations used to verify our predictions are among
the highest-resolution unit aspect-ratio simulations of
the Boussinesq equations performed to date. We have
predicted and shown from numerical simulations, that
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Fig. 4: Log-log plot of horizontal kinetic energy density
Eh(kh, kz) vs. kh for data #2 averaged over time 3� t� 5.2.
Each curve is a different value of kz. For 10� kz � 50 the
scaling ranges between k−4h and k−3h . Inset: same spectra
vs. kh/kz showing that the inertial range emerges for small
aspect ratio kh/kz > 1 as predicted.

the potential energy and horizontal kinetic energy are
indeed suppressed in the large and small limits of wave
number aspect ratio (kz/kh), respectively. Significantly,
the aspect-ratio–dependent scaling exponents observed
are closer to −4 (figs. 3 and 4), very different from the
isotropic k−γ (1< γ < 2) scaling expected, for example,
in the wave-dominated shell-averaged spectra (see fig. 1).
The naive expectation of −3 scaling exponent based on

dimensional analysis is not observed even at these high
resolutions and extreme parameter regimes. In the case
of 2d turbulence, the wave number constraints between
energy and enstrophy, both of which are conserved, forced
the high–wave-number energy spectrum to depend only
on enstrophy flux while the low–wave-number spectrum
to depend only on energy flux. In the case of strongly
rotating and stratified flow, the wave number constraint
is between potential enstrophy (a conserved quantity) and,
separately, the potential energy and horizontal kinetic
energy, each of which is not separately conserved, as a
function of aspect ratio of the wave mode. It is therefore
perhaps not physically justifiable to assume that only
potential enstrophy flux matters in the forward cascade.
Indeed there may be some mixed dependence on both
potential enstrophy as well as energy flux in both high–
and low–wave-number regimes. This issue deserves further
investigation.
Our main assumption in this study is that when rota-

tion and stratification are (equally) strong, the potential
vorticity becomes nearly linear, and hence the potential
enstrophy nearly quadratic. We do not invoke wave mode
decompositions, nor do we need to limit ourselves to only
leading-order modes. In future work we will extend our
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analysis to the case of N/f 
= 1, that is, the strength of
rotation and stratification are large but unequal. The
possibilities for generalized quasi-geostrophic flow [20] in
which domain aspect ratio is an additional parameter, are
promising areas for future research. The extension of this
work to the case of low–aspect-ratio physical domains,
could provide more insight into geophysical systems such
as atmospheric flows. Since we do not use mode decom-
position, our work may provide some connection with
in situ or experimental data which typically cannot be
mode-decomposed because of the sparseness of the one-
or two-dimensional data, in contrast to numerical simula-
tions where fully three-dimensional field data is available.
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